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study demonstrating that some HIV-1

protease inhibitors (PIs) inhibit the growth

of Plasmodium falciparum in vitro [2].

Their findings on the in vivo activity of

HIV-1 PIs in a murine model are in ac-

cordance with the results of our own

studies (K. T. Andrews, D. P. Fairlie, P.

K. Madala, J. Ray, P. M. Hilton, L. A.

Melville, L. Beattie, T. Skinner-Adams, R.

C. Reid, M. J. Stoermer, D. Gardiner, and

J. S. McCarthy, unpublished data) and

support our hypothesis [2] that the an-

timalarial activity of these drugs may be

clinically relevant, particularly for those

individuals with HIV-1 and malarial

coinfections.

We were unaware of the hypotheses and

the bioinformatic analyses published by

Savarino et al. in March 2004 [3]. Al-

though our in vitro study was published

in the 1 December 2004 issue of the Jour-

nal of Infectious Diseases, it was submitted

for publication in April of the same year.

We do, however, agree with their com-

ments on the structural similarities be-

tween P. falciparum plasmepsin II and IV

and the HIV-1 aspartic protease. Since our

initial in vitro study, we have conducted

more-detailed modeling studies of the pos-

sible interactions between the plasmepsins

and the HIV-1 PIs. These in silico com-

parisons have extended beyond the whole-

protein sequence alignment that was dis-

cussed in our initial article and have

entailed study of the 3-dimensional crys-

tal structures of both enzymes with in-

hibitors. Our unpublished observations

concur with the findings of Savarino et

al. and demonstrate that both plasmepsin

II and IV are similar to the HIV-1 pro-

tease with respect to structure and active

site. Interestingly, inhibitors of both plas-

mepsin II (including Rs370, which has

been cocrystallized with plasmepsin II

[4]) and HIV-1 display similar structural

characteristics and can be docked into the

active sites of both proteases (figure 1).

Although our in silico data and the com-

parisons described by Savarino et al. sug-

gest that the HIV-1 PIs may inhibit the

growth of Plasmodium parasites by block-

ing the action of a plasmepsin, it is im-

portant to remember that all digestive

vacuole P. falciparum plasmepsins can be

knocked out; the removal of each single

enzyme alone is not lethal to parasites in

vitro [6, 7]. Thus, if the plasmepsins are

the target of HIV-1 PIs, they probably

target 11 enzyme. Also, at this point, al-

ternative methods of action cannot be

ruled out.
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Provirus Load Is Lower
in Human T Lymphotropic
Virus (HTLV)–II Carriers
Than in HTLV-I Carriers:
A Key Difference in Viral
Pathogenesis?

To the Editor—Human T lymphotropic

virus (HTLV)–I and HTLV-II are closely

related retroviruses [1]. In addition to

HTLV-I–associated myelopathy (HAM),

HTLV-I is associated with adult T cell leu-

kemia (ATL). Some evidence suggests that

HTLV-II may be associated with a HAM-

like neuropathy [2], but the incidence of

HTLV-II–associated neuropathy is low and

its association with any malignancy is un-

certain. Why the pathogenesis of HTLV-

II disease differs from that of HTLV-I dis-

ease—despite high homologies of viral

sequences—is unclear.

Provirus load, the amount of integrated

virus in the host genome, is a correlate of

HTLV-I disease pathogenesis. HTLV-I pro-

virus loads are higher in patients with ATL

or HAM than in asymptomatic carriers [1,

3]. Higher provirus load occurs because of

greater viral replication and proliferation of

HTLV-I–infected clones. Although the as-

sociation between HTLV-II provirus load

and disease pathogenesis is less well studied,

a correlation between provirus load and

clonal proliferation of HTLV-II–infectedcells

has been observed [4].

In the 1 August 2004 issue of the Journal

of Infectious Diseases, Murphy et al. [5]

reported that HTLV-I provirus load was

higher than HTLV-II provirus load in US

blood donors. In the study, HTLV-II pro-

virus load was found to be unrelated to

age but was higher in men than in women.

In this letter, we confirm the finding of a

significant difference in provirus load be-

tween HTLV-I and HTLV-II carriers.

Between 1983 and 1990, we recruit-

ed injection drug users from methadone

maintenance treatment centers in 3 US

metropolitan areas in New York, New Jer-

sey, and Louisiana [6]. Cyropreserved pe-

ripheral-blood mononuclear cells (PBMCs)

were available from 11 HTLV-I and 91

HTLV-II carriers, all of whom were HIV-

1 negative. HTLV-I and HTLV-II provirus
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Table 1. Sex, age, provirus detection, and provirus load (mean, median, and range) in
102 US injection drug users, by human T lymphotropic virus (HTLV) type.

Characteristic HTLV-II HTLV-I P

No. of subjects 91 11
No. (%) of men 59 (64.8) 8 (72.7) .37
Age, years

Mean 44.5 43.8 .91a

25th percentile 36.8 34.8
50th percentile 42.8 43.5
75th percentile 49.0 46.9

CD4-positive cells, %
Mean 38.6 39.5 .61a

25th percentile 34.5 30.2
50th percentile 38.6 40.2
75th percentile 44.3 42.7

HTLV provirus detection, no. (%) of subjects 62 (68.1) 9 (81.8) .50
HTLV provirus load, log10 copies/1 � 105 PBMCsb

Mean 2.43 3.43 .01a

25th percentile 0.70 0.70
50th percentile 2.60 3.74
75th percentile 3.69 4.34

NOTE. PBMCs, peripheral-blood mononuclear cells.
a P values compare the means of continuous variables between the HTLV-I and HTLV-II carriers.
b Mean and percentile provirus loads include both detectable and undetectable values.

loads were quantitated by use of a real-

time polymerase chain reaction (PCR)

assay, with sequences from the tax gene

used as a primer. This assay detects HTLV-

I and HTLV-II provirus loads with equal

sensitivity. For each sample, ∼1 mg of

DNA was amplified for 45 cycles by use

of AmpliTaq Gold polymerase with an

ABI PRISM Sequence Detection System

and TaqMan PCR Reagent (PE Applied

Biosystems) [7]. Undetectable provirus

load was assigned a value of 5 copies/1

� 105 PBMCs, the midpoint between 0

and the detection limit. The log10-trans-

formed provirus loads in the HTLV-I and

HTLV-II carriers were compared by the

Kruskal-Wallis test. Age, sex, percentage

of CD4-positive cells (hereafter, “CD4

percent”), and provirus detection were

compared either by the x2 test or by

Fisher’s exact test.

The mean age and CD4 percent at the

time of blood collection did not differ be-

tween the HTLV-I and HTLV-II carriers

(table 1). Twenty-nine (31.9%) of the 91

HTLV-II carriers had undetectable provi-

rus loads, compared with 2 (18.2%) of the

11 HTLV-I carriers ( ). The meanP p .50

log10 provirus load was lower in the 91

HTLV-II carriers than in the 11 HTLV-I

carriers (2.43 vs. 3.43 log10 copies/1 � 105

PBMCs; ). The HTLV-I provirusP p .01

load reported in our study, which corre-

sponds to 2.7% of lymphocytes being in-

fected, is consistent with what has been

reported in asymptomatic HTLV-I carriers

in other cohorts [8, 9] but is somewhat

higher than the mean reported by Murphy

et al. (3.28 log10 copies/1 � 106 PBMCs,

which corresponds to 0.19% of lympho-

cytes being infected).

In contrast to Murphy et al.’s findings,

HTLV-II provirus load was not signifi-

cantly different in 32 men and 59 women

in our cohort (2.31 vs. 2.65 log10 copies/

1 � 105 PBMCs; ). In a linear re-P p .30

gression model in which sex was adjusted

for, the mean HTLV-II provirus load de-

creased by 0.33 log10 copies/1 � 105 PBMCs

(95% confidence interval, 0.01–0.65 log10

copies/1 � 105 PBMCs) per every 10-year

increment in age ( ). HTLV-I pro-P p .04

virus load was also similar in 8 men and

3 women (3.31 vs. 3.77 log10 copies/1 �

105 PBMCs; ), but the smallP p .68

number of subjects limited our ability to

further analyze the associations between

HTLV-I provirus load and CD4 percent

and age.

The discrepancies in the results of the

2 studies could be due to many factors,

including differences in the characteris-

tics of the study populations, such as route

of infection and drug-use practices. Al-

though the mean ages of the HTLV-II car-

riers in each study were similar, our pop-

ulation consisted entirely of injection drug

users, whereas Murphy et al.’s population

included subjects who did not use injec-

tion drugs. An association between older

age and lower HTLV-II provirus load in

our population is of interest. For HTLV-

I carriers, HAM incidence appears to peak

between 40 and 50 years of age and de-

creases thereafter. The age-specific inci-

dence of HAM-like neuropathy in HTLV-

II carriers has not been established.

In summary, the results of these 2 stud-

ies confirm that a finding of a higher pro-

virus load in HTLV-I carriers than in

HTLV-II carriers is not limited to a specific

study population and is not a result of

varying sensitivities of PCR assays. These

findings support the possibility that a

lower disease incidence in HTLV-II car-

riers than in HTLV-I carriers may be due

to lower levels of HTLV-II provirus load.
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Figure 1. A, Human T lymphotropic virus (HTLV)–I proviral load, by age, in baseline samples
from 127 HTLV-I–infected subjects in the HTLV Outcomes Study ( ; ). B, HTLV-IIb p .001 P p .92
proviral load, by age, in baseline samples from 328 HTLV-II–infected subjects in the HTLV Outcomes
Study ( ; ). PBMCs, peripheral-blood mononuclear cells.b p .014 P p .14
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Reply to Hisada et al.

To the Editor—Hisada et al. [1] provide

interesting data that support the major

finding of the recently published study [2]

by my colleagues and me but that do not

support some minor findings. Both studies

analyzed cross-sectional data from preva-

lent cohorts and found that proviral load

was up to 1 log10 higher in human T

lymphotropic virus (HTLV)–I carriers

than in HTLV-II carriers. Replication of

this finding strengthens the conclusion

that the magnitude of proviral load may

explain the differences in pathogenesis

between the 2 retroviruses—differences

that exist despite the similar genetic se-

quences of the viruses. It may also explain

why both serologic and nucleic-acid as-

says are less sensitive for HTLV-II than

for HTLV-I, a matter that has been only

partially addressed by the blood bank

community [3–5]. It would be interesting

if Hisada et al. could perform HTLV-II

subtyping for their cohort, to test the

finding reported by my colleagues and

me of a higher proviral load in persons

infected with HTLV-II subtype A than in

persons infected with HTLV-II subtype B.

Despite the use by both studies of prim-

ers directed at tax gene sequences that are

conserved between HTLV-I and HTLV-II,

the ∼1 log10 higher mean proviral loads in

Hisada et al.’s study (7-fold for the HTLV-

II carriers and 14-fold for the HTLV-I car-

riers) are most likely the result of technical

differences in the quantitative polymer-

ase chain reaction assays used. Testing of

shared reagents and reference standards by

these and other laboratories, as proposed

recently during a workshop at the 11th

International Conference on Human Ret-

rovirology: HTLV and Related Viruses




